当前位置:首页|资讯

热成像仪、红外相机

作者:石鑫华视觉发布时间:2024-09-23

热成像仪、红外相机

热成像仪的定义

热成像仪又称热像仪红外线热成像仪等。是一种对物体散发出的红外线进行感光成像的设备,这种设备被广泛运用在军事、消防、医疗、工业生产、海关检查等领域。

热成像仪下的鸵鸟


热成像仪的用途

热成像仪的用途非常广泛,特别是在军事上,利用热成像仪可以在夜间发现散发热量的坦克发动机、士兵。在工业上,可以利用热像仪快速探测出加工件的温度,从而掌握必须的信息。由于电动机、晶体管等电子器件发生故障时往往伴随着温度的异常升高,利用热成像仪也可以快速诊断故障。在流行性感冒、肺炎等疾病流行时,可以利用热成像仪快速判断是否有发热现象。由于癌细胞的温度较高,也可用其判断诊断乳腺癌等疾病。边防部门也可用其判断交通工具中是否有偷渡客。

红外相机

红外相机与热成像仪类似,只是其使用的是对红外敏感的图像传感器。在机器视觉领域,在一些特殊的场合也会使用红外相机进行拍摄分析。因为其“光源”仅仅只是红外,而不是可见光,因此其成像一般来讲,是没有太多颜色的。而在热成像仪中,为了表明热量,将其表征成红色的代表高温,而蓝色代表低温。这样可以更明确的表征温度的高低。当然,也有长波红外/远红外的相机,不过一般工业上使用的比较少,在其他一些特殊行业里使用的要更多一些。

大恒图像MARS-2621-42GTM-NIR近红外优化相机


大恒图像MARS-2621-42GTM-NIR规格参数
大恒图像MARS-2621-42GTM-NIR光谱图
大恒图像MARS-138-95GM-P-TN-SWIR F02短波红外相机
大恒图像MARS-138-95GM-P-TN-SWIR F02规格参数
大恒图像MARS-138-95GM-P-TN-SWIR F02光谱

使用红外相机时,不仅仅要考虑相机对红外光谱的响应,镜头也需要有相应的优化响应。因为镜头的折射率是和波长相关的一个参数,不同波长时,在同一镜头下的折射率是不一样的,因此其引起的像差也是不一样的。一般的可见光下使用的工业镜头,可能都不会在红外光谱下得到优化,成像质量通常会下降,图像比较模糊。

扩展阅读:

热成像仪的发展历史

热成像仪是从对红外线敏感的光敏元件上发展而来,但是光敏元件只能判断有没有红外线,无法呈现出图像。在第二次世界大战中交战各国对热成像仪的军事用途表现出了兴趣,对其进行了零星的研究和小规模应用。1952年,锑化铟被开发出来,这种新的半导体材料促进了红外线热成像仪的进一步发展。不久之后,德州仪器公司开发出了具有实用价值的前视红外线(Forward looking infrared)热成像仪。这一系统采用的是单原件感光,利用机械装置控制镜片转动,将光线反射到感光元件上。随着碲镉汞材料制造工艺的成熟,在军事领域大规模采用热成像仪成为了可能。60年代之后出现了由60或更多的感光元件组成的线性整列,瑞典的AGA公司将热成像仪的应用拓展至民用领域发展。然而由于最初采用的是非制冷感光元件,制冷部件加上机械扫描机构使得整个系统非常庞大。等到CCD技术成熟之后,焦平面阵列式热成像仪取代了机械扫描式热成像仪。至80年代半导体制冷技术取代了液氮、压缩机制冷之后开始出现了便携、手持的热成像仪。90年代之后,德州仪器又开发出了基于非晶硅的非制冷红外焦平面阵列,进一步降低了热成像仪的生产成本。

热成像仪的原理与分类

红外热成像仪有光子探测和热探测两种不同的原理。前者主要是利用光子在半导体材料上产生的电效应进行成像,敏感度高,但探测器本身的温度会对其产生影响,因而需要降温。后者将光线引发的热量转换为电信号,敏感度不如前者同时无需制冷。除此之外,还根据热成像仪的工作波段、所使用的感光材料进行分类。常见热成像仪工作在3到5微米或8到12微米,常用感光材料则有硫化铅、硒化铅、碲化铟、碲锡铅、碲镉汞、掺杂锗和掺杂硅等。根据感光元件数量和运动方式,则有机械扫描、凝视成像型等。


Copyright © 2024 aigcdaily.cn  北京智识时代科技有限公司  版权所有  京ICP备2023006237号-1