当前位置:首页|资讯|Midjourney|Stable Diffusion

Midjourney:伟大的公司只需要十一人

作者:巴比特资讯发布时间:2023-04-28

原标题:Midjourney:伟大的公司只需要十一人

原创:举大名耳

来源:AI新智能(ID:alpAIworks)

图片来源:由无界 AI工具生成

在生成式 AI、云计算等技术逐渐抹平大企业与中小企业之间的技术、成本差距后,各企业真正比拼的,只剩下人才、创意与执行力。

目前,随着 AI 技术的快速迭代,各种基于 AIGC(人工智能内容生成)技术的产品不断涌向社会,而其中最普遍的,则莫过于大量的 AI 绘图模型,如 Midjourney、Dreambooth、Novel AI 和 Stable Diffusion 等。

虽然 AI 绘图领域,看似进入了百花齐放的时代,但目前业内的顶流,仍然是 Midjourney 和 Stable Diffusion 为代表两大龙头。

今年 4 月,Midjourney 进一步宣布推出针对二次元、动漫风格的绘图模型 Niji-journey V5。

这一模型与以往最大的不同,就是它能“取代”高级原画师了。

凭借着出众的造型张力和色彩使用、以及丰富的风格化表现力,Niji V5 不光看傻一众吃瓜群众,甚至惊艳了业内画师,让人直呼其已经具有了大师插画的味道。

之所以能够如此质变,一大原因在于相较此前版本,Niji V5 支持了风格化(stylize)参数设置。

简而言之,在该版本下,用户只需使用风格化命令,就能引用不同艺术家设计风格产出图片。

在 Niji V5 的助力下,人们轻易地生成了许多“大师级”的作品。

Niji V5 产出图片的品质相当优秀,几乎覆盖市面上的常见风格。在此基础上,使用者只需要微调设计,基本能够达到大部分优秀高级原画的工作需求。

如此出色的技术,不禁让人对其背后的 Midjourney 公司产生了强烈的兴趣。

实际上,虽然 Midjourney 和 Stable Diffusion 同为当前 AI 绘画的两大领军者,但其当下的境遇却有着天壤之别。

Stable Diffusion 背后的明星公司——Stability AI,目前正面临严重的财政困境,由于没有明确的盈利途径,公司正面临倒闭的危机。

相较之下,Midjourney 却运行得风生水起,凭借着付费订阅的商业模式,Midjourney 不仅获得了每年 1 亿美元的营收,并且在 Discord 上已经积累了 1000 多万用户。

同为开发绘画 AI 的团队,Midjourney 是怎么取得今天的成就的呢?

延伸人类想象力

虽然 Midjourney 在不融资的情况下就实现了盈利,但从创建的背景来看,创始人大卫・霍尔茨(David Holz),并不像那种钻进钱眼里的人。

他为 Midjourney 设立了一个非常不“铜臭”的宗旨:AI 不是现实世界的复刻,而是人类想象力的延伸。

而这样充满科幻色彩的宗旨,和大卫的背景、经历有着很大的关系。

MidJourney 的创始人大卫・霍尔茨

作为一个数学专业的博士生,大卫曾在大学期间研究激光雷达、大气科学和火星任务,可谓是一个涉猎甚广,且充满好奇心的“怪才”。

经过了广泛的探索后,大卫似乎找到了自己真正的兴趣所在,于是,在 2010 年便创立了一家研发手部跟踪技术为主的公司——Leap Motion。

然而,由于与之相关的 VR/AR 技术一直不成熟,Leap Motion 也始终没能做出有具体应用场景的产品。

大卫之前研发的手部追踪产品

最终,2019 年,大卫把 Leap Motion 公司卖给了竞争对手 Ultrahaptics。随后,他成立了一个工作室来探索新的机会,

恰巧在这时,AI 在生成艺术方面取得了突破。

Transformer 架构的出现,彻底改写了图像合成的历史。从此,多模态深度学习整合了 NLP 和计算机视觉的技术,成为图像合成的艺术方法。

于是,借着生成式 AI 的东风,大卫创建了 Midjourney。

公司团队成员仅 11 人,其中 1 位创始人、8 位研发人员、1 位法务、1 位财务。

在公司的构成中,完全没有产品经理、市场销售人员,除了创始人、两个支持性岗位(法务、财务),80% 的人员都是研发人员。

而作为中坚力量的研发成员,一半(4 位)都是尚未毕业的本科生。

虽然这四位本科生都有一些实操甚至是创业经历,但是确实经验有限,而且也非毕业顶尖名校。

剩下来的几位研发人员,都有着比较丰富的职业经历。

在聚拢人才后,大卫也进一步明确了自己对于 Midjourney 的理念。

大卫将公司 Logos 设计成了一艘在波浪中航行的帆船,意为水既危险,又是文明的驱动力。

懂得如何与水一起生活和工作的人类,将有能力在水中游泳、做船、筑坝发电,从而更好的生活,因此,大卫认为 AI 是人类想象力的引擎。

然而,在当时生成式 AI 的竞争格局上,有这类“雄心壮志”的团队,可不只 Midjourney 一家。

例如 Stable Diffusion 的母公司 Stability.AI,在创立时也声称要将自己的使命定格为成为世界领先的开源 AI 公司,并发扬将 AI 共享于全世界的理念。

然而,口号喊得震天响,理念终归是不能当饭吃的啊。

情怀满满的大卫,之后是怎么解决一系列公司融资、盈利的问题的呢?

开源 VS 闭源

从今天来看,Midjourney 的盈利模式看上去十分简单,即通过付费订阅的商业模式,按月向用户收取费用,其标准有 3 种套餐,分别是 10/30/60 美元/月。

不过,这样的模式要想行得通,得解决两大关键问题:

1. 凭什么让用户产生付费的意愿?

2. 大模型训练所需要的高昂成本怎么解决?

先来说说第一点,实际上,当 AI 图像生成技术开始方兴未艾之时,很多使用者并不觉得这种技术是需要“付费”的。

原因就在于,当时像 Stable Diffusion 这样的行业龙头,为了吸引大量的开发者,最大程度的把模型用起来,因此采取了开源的模式。

和 Dall・E、Midjourney 不同,Stable Diffusion 是完全免费、不限次数、任何人都可用的。

虽然对硬件有着一定要求,但也能在几秒钟内生成高清图像。

这样的好处在于,开源社区会齐心协力地完善模型文档,共同解决技术难题。这使得代码的迭代速度非常快,优化效率远远高于闭源系统。

但缺点也很显而易见,那就是商业化不够直接,可能为别人“做了嫁衣”。

而相较之下,Midjourney 却采用了不那么开放的“闭源系统”。

如果说闭源系统真的有什么好处,那就是针对性更强了。

因为模型闭源,并通过庞大的用户量积累了独有的数据集,可以根据用户需求不断地针对性训练模型,长期来看更有利于建立竞争壁垒。

在探索用户需求这点上,大卫采取了产品上线后边测试边改进的办法。

例如 Midjourney 模型最开始很慢,需要 20 分钟才能出一张高质量的图片。后来团队推出了一个做 15 秒生产图片,但是质量没那么高的版本,

经过多轮测试,团队了解到,速度和质量其实都只是表象,因为不同用户的选择,实际上是多维度的。

在针对用户需求进行调整后,无论是创意行业设计者,还是普通爱好者,都能通过 Midjourney 满足自身的绘画需求。

除了了解用户需求外,在使用流程方面,Midjourney 也并不像 Stable Diffusion 需要本地部署,操作十分便捷,对显卡和硬件性能也几乎没有要求。

虽为闭源,但 Midjourney 在使用难易度上,却更像一个“亲民”的大众产品。

于是,Midjourney 获得大量用户后,养成了用户使用习惯,且在开启付费订阅后就进一步加强了用户粘性。

算力难题

刚才提到,Midjourney 在硬件方面,对用户几乎没什么要求。而这样的原因,则是由于 Midjourney 所有的图片都是在云上完成并训练的。

但如此庞大的云计算量,必然需要高昂的成本,这就回到了刚才的第二个问题:

在没有融资的情况下,在云上进行大模型训练所需要的高昂,该成本怎么解决?

实际上,大卫解决这个问题的方式很简单,也很不可思议。

当大卫需要找到一个云供应商提供 10,000 个 GPU 时,他直接给云供应商的负责人发了封电子邮件,结果对方就直接给到了这些资源,完全不需要风险投资。

看到这儿,也许有人惊得下巴都掉了,这种事在现实中真的可能吗?

当然,供应商并不是抽风了,而是看中了大卫之前的成就和声誉。

大卫之前的创业已经获得了声誉,大卫打从创办 Leap Motion 的时候起就有一个观点,他觉得技术的最大限制不是规模、成本或速度,而是人们如何与之互动。

Leap Motion 的手势互动是一个尝试,到了 Midjourney 这里,他开始使用更短的绘画关键词(prompt)来催动 AI 产出。

这样的理念,吸引了每一个了解大卫的人,也让他得到了云供应商的支持。

然而,在获得了供应商的鼎力支持后,大卫也仍然要面对算力捉襟见肘的问题。

从成本来说,Midjourney 大约 10% 的云成本用于训练,90% 是用户制作图像的推理。所以几乎所有的成本都在制作图像上。

为解决这一点,Midjourney 在世界上八个不同的地区,设立了自己的服务器,比如韩国、日本或荷兰等,在每个时区的夜间,当地人都在睡觉,没有人使用 GPU。Midjourney 就可以充分利用这些算力,实现 GPU 负载平衡。

实际上,这种依靠云端服务器来降低成本、加快模型训练的做法,与目前腾讯训练大模型的策略十分相似。

在算力已经愈发成为大模型训练瓶颈的今天,如果在训练开发环节,直接调用云端的大模型和 AI 算力资源,完成后一键分发到用户终端上,就可以大大降低成本,减少工作量。

因此,Midjourney“云上计算”的这一步棋,着实是摸准了时代的方向。

互联网的演进之路,已经说明,无论 To B 还是 To C 行业,都在追求越来越集约精简的终端硬件、越来越低门槛的交互入口、越来越轻盈的软件应用。

所以说,大模型从云入端,是模型服务商实现商业化的必争之地。

总结

从 Midjourney 看似不可思议的创业经历,我们可以发现,在这次 AIGC 时代的浪潮中,能够脱颖而出的企业、团队,未必是财大气粗的头部大厂。

因为在生成式 AI、云计算等技术逐渐抹平大企业与中小企业之间的技术、成本差距后,各企业真正比拼的,只剩下人才、创意与执行力。

而这也是为什么,Midjourney 这类仅有寥寥十几人的小团队能脱颖而出的原因。因为这样依靠少数尖端人才组建的团队,具有大企业所没有的灵活性、创见和魄力。

而这类小团队的创意、灵感,若要真正在市场、社会中扎下根,就离不开对用户多样化、个性化需求的追踪。

这是因为,AIGC 技术的“泛用性”,决定了其绝不是针对某一行业、人群,或是某一类企业的技术。

只有在这多样化的需求中,尽可能地满足不同层级用户的特定需求,一款产品才能真正地具有长远的生命。

既服务所有人,又不忽视每一个特殊的人,这或许就是 Midjourney 成功的最大原因。


Copyright © 2024 aigcdaily.cn  北京智识时代科技有限公司  版权所有  京ICP备2023006237号-1