来源:华兴资本
自ChatGPT面世以来,AI行业再度被引爆,AI大模型作为新一代颠覆性技术同时掀起了一波又一波热潮,头部厂商与创业者纷纷涌入,备受业界瞩目与市场追捧。
在这汹涌的狂欢背后,实则代表着AI发展的阶跃,即AI直接创造了生产力,甚至被视为全新的生产力革命。那么,该如何理解现象级产品ChatGPT背后的技术演进?围绕新一代AI及产业链,又有哪些率先落地的应用场景与投资机遇?
近日,华兴新经济基金科技与企业服务团队通过对ChatGPT的成长历史与技术路线进行了梳理与分析,并着重探讨了生成式AI的技术突破与迭代方向,对未来核心落地场景及产业链机遇进行了深入研究和思考,汇总成本篇文章,期望能给大家带来一些启发与收获。
ChatGPT是美国人工智能研究实验室Open AI于2022年11月底推出的一款人工智能聊天机器人程序。上线40天ChatGPT月活破千万,上线60天月活破亿,涨粉速度远超其他同类型产品,史上热度最高。
从技术角度,ChatGPT是逐渐成熟的大模型(Transformer)路线与基于人类反馈的强化学习结合的产品。LLM发展的核心原因正是在于Transformer,使得用大规模的数据训练模型具备了可能性,结合Alignment,实现了模型的社会化。以GPT为代表,AI进入新的发展阶段,这背后技术上的变化突破主要体现在模型技术、参数、训练数据、训练方法的演化融合。
生成式AI与上一代AI的核心区别来自于以下几个维度:
大模型具备高的算力门槛、创造力门槛、工程化门槛等,使得其必然是高举高打的。从行业终局上看,大模型的终局会类似云,但考虑到不同的技术路线,会比云略分散,预期市场将有4-5家通用大模型公司,其中1-2家可能属于创业公司的机会。
同时,市场会出现几十亿-百亿级参数级别的服务于特定场景的所谓vertical的模型。考虑到更快的落地速度、更低的使用成本以及不亚于大模型的使用效果,叠加更好产品交互体验,vertical的模型会凭借自己在特定场景的深耕而有自己的一方市场。
基于此,我们简要梳理了四个基础模型的筛选标准:
因为底层大模型兼具数据壁垒和算力壁垒,对资金/算力要求高,且具备优势的公司可建立起用户调用和模型迭代之间的飞轮,预计头部玩家较为集中。而目前国内市场格局仍还较为初期和分散,参与大模型的公司已超过30家,未来市场将面临洗牌。
而应用层的落地,发展路径可能会不太一样。这主要在于应用层可基于行业Know-how及数据对模型进一步优化,新一代AI对人类思维理解能力跃升,而行业知识则可以使AI更具备行业专深的能力。打一个形象的比喻,上一代AI模型如果是中学生,这一代大模型即是一个具备通识教育的本科生,应用层要做的就是专才的研究生。伴随专业知识输入和行业Know-how输入,AI可应对复杂度更高,且专业性也更强的工作任务,并能基于行业知识完成融会贯通。
目前在应用侧,生成式AI在文本领域、图像领域、代码领域的应用已经初步成熟,而视频/3D/游戏领域的成熟应用仍需要一定的发展时间。
以文字生成为例,上一代AI能力以辅助功能为主,如文字纠错、转写等,但核心价值还是由人创造。新一代AIGC自动生成部分专业内容,核心是基于对上下文理解后的结构化写作,类似于由辅助驾驶逐步走向自动驾驶,实现对业内初级专业人员的替代,如其可根据用户需求完成对简单专业材料的书写,如突发新闻、网络自媒体稿件等,乃至标书制作、招股书等各类有结构化规律的文书工作均可部分涉足,从而为文字作者、翻译人员、插画创作者、配音人员、音乐制作人、视频编辑人员等提供增效。
目前,借助大模型在细分场景内完成深耕,海外已有相关独角兽公司,我们看到如Jasper、Midjourney、Stability.AI等公司都在快速发展。而针对现有的各类软件,也均有接入新一代AI能力,如Notion AI、Office Copilot、Github Copilot等,我们预计AI落地将同时对新场景和老场景下的软件带来深远影响。
在应用侧,新一代AI对现有应用层软件也将带来影响。一方面,新一代AI对偏管理属性或行业知识属性的赋能效果更明显:此类软件的核心价值在于提供基于行业Know-how或管理Best Practice的知识凝结,现在借助能力更强的AI功能可使软件功能流转更为智能。新一代大模型公司可完成AI功能的搭建,但无法短期快速积累行业Know-how或管理实践,AI更多作为赋能者提升此类软件的实际使用效果。
我们预期,对于具备行业数据+工作流能力的积累的软件服务场景,在AI模型上完成Fine-Tuning,结合垂直行业知识+模型调优,可进一步在专业场景内使用,新一代AI的加入将大幅加强软件的智能性。
另一方面,新一代AI可能对纯工具类软件具有负面影响。无Know-how或数据沉淀下的工具软件的壁垒在大模型面前相对较低,特别是以上一代NLP技术为核心优势的公司,其技术能力被相对拉齐,后续需尽快拥抱新一代技术。
综上,在应用端,我们主要关注文字/图像/代码三个模态领域首先落地,新场景下关注结构化内容生成叠加高价值人力场景,可实现降本增效效果的机会;老场景下关注有潜力完成专有数据丰富积累+垂直行业Know-how积累的公司,推动公司后续跑起用户-数据-效果的飞轮。
免责声明:
本文由华兴资本集团(连同其关联公司,统称“华兴资本”)编写,谨供接收方作参考用途,不构成对接收方的投资建议,不构成买卖、认购证券或其它金融工具及产品的邀请或保证,不作为也不应被视为在任何地区对任何证券的研究报告或任何基金募集文件或对基金投资人的任何信息披露文件。接收方不应仅依靠本文,而应按照自己的判断作出投资决定,并在作出任何投资行动前,咨询专业意见。
本文所载资料的来源皆被华兴资本认为可靠,但华兴资本概不担保本文所含信息的准确性、完整性或新近度。本文所载的见解、分析、预测、推断和期望均截至本文的发表日期,且可能在未经事先通知的情况下调整。华兴资本与本文所提及的公司之间可能存在或寻求业务关系,因此,接收方请知悉可能存在的影响本文客观性的利益冲突。华兴资本不对因使用本文而承受的直接或间接损失承担任何责任。未经华兴资本的事先书面同意,本文件或其任何内容不得被披露或用作其他任何目的。
对话番茄资本卿永,餐饮业“最后的十年”如何掘金?|VC洞见
基因治疗投资热下的“冷思考”:未来趋势如何?投资机遇何在?丨VC洞见
美国禁令再升级,国产半导体的挑战与新机遇 | VC洞见
包凡:抓住三个确定性机会,新一批伟大公司正在当下孕育中|VC洞见
高鹄新能源研究:从底层材料创新看新一代电池演进 | VC洞见
英诺天使李竹:2个关键词 4个大方向,解密未来十年投资风口 | VC洞见