当前位置:首页|资讯|人工智能|ChatGPT

人工智能(Artificial Intelligent,AI)的数学基础(序)

作者:有一点倦怠的浮士德发布时间:2023-02-24

近日,NovelAi,ChatGPT等基于人工智能技术的网站一次次火出圈,不少网友也拿到了一些安装包之类的东西,然而,对于有兴趣的同学却不满足于使用大佬打好的包,而是想更深入的学习一些技术,本系列随缘更新,本篇主要讲述人工智能的起源与发展。

人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。

人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。

从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。

而人工智能的发展经历了很长时间的历史积淀,早在1950年,阿兰·麦席森·图灵(Alan Mathison Turing,1912—1954)就提出了图灵测试机,大意是将人和机器放在一个小黑屋里与屋外的人对话,如果屋外的人分不清对话者是人类还是机器,那么这台机器就拥有像人一样的智能。

人工智能第一世代

1956年,美国汉诺斯小镇宁静的达特茅斯学院,约翰·麦卡锡(John McCarthy,1927年~2011年)马文·明斯基 (Marvin Minsky,( 1927 - 2016)克劳德·艾尔伍德·香农(Claude Elwood Shannon,1916-2001)等学者聚在一起,共同讨论着机器模拟智能的一系列问题。他们讨论了很久,始终没有达成共识,却为讨论内容起了一个名字:人工智能。自此,人工智能(AI,Artificial Intelligence)开始出现在人们的视野,1956年也就成为了人工智能元年。“人工智能”成为了一个独立的学科。之后的十余年内,人工智能迎来了发展史上的第一个小高峰,研究者们疯狂涌入,取得了一批瞩目的成就,比如1959年,第一台工业机器人诞生;1964年,首台聊天机器人也诞生了。

在当时,人工智能面临的技术瓶颈主要是三个方面,第一,计算机性能不足,导致早期很多程序无法在人工智能领域得到应用;第二,问题的复杂性,早期人工智能程序主要是解决特定的问题,因为特定的问题对象少,复杂性低,可一旦问题上升维度,程序立马就不堪重负了;第三,数据量严重缺失,在当时不可能找到足够大的数据库来支撑程序进行深度学习,这很容易导致机器无法读取足够量的数据进行智能化。

人工智能第二世代

终于在1980年,卡内基梅隆大学设计出了一套专家系统——XCON。该专家系统具有一套强大的知识库和推理能力,可以模拟人类专家来解决特定领域问题。

这是一种采用人工智能程序的系统,可以简单的理解为“知识库+推理机”的组合,XCON是一套具有完整专业知识和经验的计算机智能系统。

这套系统在1986年之前能为公司每年节省下来超过四千美元经费。有了这种商业模式后,衍生出了像Symbolics、Lisp Machines等和IntelliCorp、Aion等这样的硬件软件公司。在这个时期,仅专家系统产业的价值就高达5亿美元

可惜的是,由于其畸形的生态(即对人工智能的研究仅限于专家系统),在仅仅维持了7年之后,这个曾经轰动一时的人工智能产业就宣告结束历史进程。到1987年时,苹果和IBM公司生产的台式机性能都超过了Symbolics等厂商生产的通用计算机。从此,专家系统风光不再。

人工智能再次崛起

上世纪九十年代中期开始,随着AI技术尤其是神经网络技术的逐步发展,以及人们对AI开始抱有客观理性的认知,人工智能技术开始进入平稳发展时期。1997年5月11日,IBM的计算机系统“深蓝”战胜了国际象棋世界冠军卡斯帕罗夫,又一次在公众领域引发了现象级的AI话题讨论。这是人工智能发展的一个重要里程。

2006年,Hinton在神经网络的深度学习领域取得突破,人类又一次看到机器赶超人类的希望,也是标志性的技术进步。

2016 年,Google 的 AlphaGo 战胜了韩国棋手李世石,再度引发 AI 热潮。

AI不断爆发热潮,是与基础设施的进步和科技的更新分不开的,从 70 年代 personal 计算机的兴起到 2010 年 GPU、异构计算等硬件设施的发展,都为人工智能复兴奠定了基础。

小结

到目前为止,人工智能按照总体向上的发展历程,可以大致分为4个发展阶段,分别为精耕细作的诞生期急功近利的产业期集腋成裘的爆发期,以及现在逐渐用AutoML来自动产生神经网络的未来发展期

早期由于受到计算机算力的限制,机器学习处于慢速发展阶段,人们更注重于将逻辑推理能力和人类总结的知识赋予计算机。但随着计算机硬件的发展,尤其是GPU在机器学习中的应用,计算机可以从海量的数据中学习各种数据特征,从而很好地完成人类分配给它的各种基本任务。

此时,深度学习开始在语音、图像等领域大获成功,各种深度学习网络层出不穷,完成相关任务的准确率也不断提升。同时,深度学习神经网络朝着深度更深、结构更加巧妙复杂的方向推进,GPU的研发与应用也随着神经网络对算力要求的不断提高而持续快速向前推进。

附录:

1.达特茅斯会议

会议的主要发起人——约翰·麦卡锡(John McCarthy),计算科学家、认知科学家,也是他提出了“人工智能”的概念。麦卡锡对于人工智能的兴趣始于1948年参加的一个名为“脑行为机制”的讨论会,会上,约翰·冯·诺伊曼(John von Neumann)提出的自复制自动机(可以复制自身的机器)激起麦卡锡的好奇,自此开始尝试在计算机上模拟智能。达特茅斯会议前后,麦卡锡的主要研究方向是计算机下棋。

另一位积极的参与者是当时在哈佛大学的马文·明斯基(Marvin Minsky,1969年图灵奖获得者),他的老师塔克(Albert Tucker)多年来担任普林斯顿大学数学系主任,主要研究非线性规划和博弈论。1951年,明斯基建造了世界上第一个神经网络模拟器Snare。在Snare的基础上,明斯基解决了“使机器能基于对过去行为的知识,预测当前行为的结果”这一问题,并完成了他的博士论文《Neural Nets and the Brain Model Problem》。

塞弗里奇(Oliver Selfridge),模式识别的奠基人,后来领导了MAC项目,这个项目后被分为计算机科学实验室与人工智能实验室,又合并为麻省理工学院最大的实验室MIT CSAIL。

另外两位重量级参与者是纽厄尔(Allen Newell)和西蒙(Herbert Simon),这两位学者后来共享了1975年的图灵奖。

纽厄尔在普林斯顿大学数学系硕士毕业后,加入了美国著名的兰德公司,并结识了西蒙,开始了他们一生的合作。纽厄尔和西蒙提出了物理符号系统假设,简单的说就是:智能是对符号的操作,最原始的符号对应于物理客体。这一假设与西蒙提出的有限合理性原理成为人工智能三大学派之一——符号主义的主要依据。后来,他们与珀里思(Alan Perlis,第一届图灵奖获得者)共创了卡内基梅隆大学的计算机系。

最后,信息论的创始人香农(Claude Shannon),他比其他几位年长10岁左右,当时已经是贝尔实验室的大佬。1950年,香农发表论文《Programming a computer for playing chess》,为计算机下棋奠定了理论基础。

除上述学者外,IBM的塞缪尔(Arthur Samuel),达特茅斯的摩尔(Trenchard More)、算法概率论的创始人所罗门诺夫(Ray Solomonoff)等学者也参与了这次会议。

1953年夏天,麦卡锡和明斯基都在贝尔实验室为香农打工。香农当时在研究图灵机及是否可以用图灵机作为智能活动的理论基础,但是麦卡锡只对计算机实现智能感兴趣。由于与香农研究方向上的不同加上麦卡锡认为香农在一些时候过于理论,所以麦卡锡与IBM第一代通用机701的主设计师罗切斯特(Nathaniel Rochester)计划搞一次活动,主要讨论机器模拟智能,并说动香农与明斯基共同写了一个项目建议书以寻求活动资助。

麦卡锡给这个活动起了一个名字:人工智能夏季研讨会(Summer Research Project on Artificial Intelligence)。

会议的主要议题有以下7个方面:

  • 自动计算机

  • 如何为计算机编程,使其能够使用语言

  • 神经网络

  • 计算规模理论

  • 自我改进(指机器学习)

  • 抽象

  • 随机性与创造性

达特茅斯研讨会进行了两个月,其中,纽厄尔和西蒙公布的程序“逻辑理论家”(Logic Theorist)引起与者极大的兴趣,这个程序模拟人证明符号逻辑定理的思维活动,并成功证明了《数学原理》第2章52个定理中的38个定理,被认为是用计算机探讨人类智力活动的第一个真正成果,也是图灵关于机器可以具有智能这一论断的第一个实际证明。此外,逻辑理论家开创了机器定理证明这一新的学科领域(我记得高中数学课本有关于机器定理证明的相关课外拓展)。

最后补充一下,在达特茅斯会议期间,“人工智能”这一词虽然被提出,但并没有获得大家的完全认可,尤其是纽厄尔和西蒙,他们的研究在某种意义上偏向于功能学派,他们更主张用“复杂信息处理”这个词。"人工智能"一词真正被学界接受要到1965年,德雷弗斯(Hubert Dreyfus)发表了著名的《炼金术与人工智能》报告,这一报告对当时人工智能的研究提出质疑,意图说明这些研究是没有基础的无用功。由于报告标题与内容过于大胆,最初兰德公司仅以备忘录的方式发布了油印版,直至1967年,兰德公司才正式发布了这一报告的印刷版。该报告后来成为兰德公司销量最高的报告之一,在AI学者中广为流传,关于这一报告的具体影响,可以自己去了解一下

2.人工智能主要的数学内容

  • 概率论、数理统计;

  • 数值代数、数值分析、最优化;

  • 经典分析、函数论;

  • 离散数学、理论计算机科学。

根据林伟教授的报告,我还整理出十种所谓“新数学”

01、泛函分析

02、群表示论与范畴论

03、微分几何

04、代数几何

05、随机矩阵

06、最优传输

07、动力系统与随机分析

08、统计物理与非线性科学

09、信息论

10、博弈论

*以上内容皆总结自林教授报告《人工智能新数学》

以上内容并不会全部谈论到,毕竟这只是讲数学基础的内容。

*本人只是蒟蒻,如果后面论述有差错的话希望大佬们指正








Copyright © 2025 aigcdaily.cn  北京智识时代科技有限公司  版权所有  京ICP备2023006237号-1