AIGC背后充满了故事,在一家家企业手握巨额融资之时,人们耳边再次响起了警钟。诚然,在新的浪潮之下,符合商业规律的企业才能笑到最后。在国外竞品大踏步前行之际,国内的通用智能企业境遇如何?
前景很乐观,但当下似乎并没那么好过。
来自OpenAI的压力
似乎OpenAI的进步更快。
前些日子,在ChatGPT推出后,不仅是英文对话,在中文领域,该系统的用户体验也超越了国内的众多产品。以至于,一时间,人们的朋友圈被ChatGPT的对话刷屏。
一些国内企业表示,以目前的进度来看,光是追上OpenAI,就感觉“很吃力”。
虽然,目前OpenAI的终端产品由于众所周知的问题未在国内市场全面铺开,但对于具有技术理想的相关企业来说,这种滋味是十分难受的。有人将这种情况描述为北斗未出现时的导航行业,“从信创的角度考虑,中国的AIGC是肯定要有的,但技术差距也是不可忽视的”,一位投资人评价道。
客观来说,造成国内AIGC落后于同行的原因是多方面的:有A100显卡的获得受到制约、国内人才队伍发展较慢等诸多原因。其中,在硬件方面,大模型训练过于依赖进口GPU显卡,虽行业间出现了便宜的国产替代品,但以目前的技术水平,还不能给出满意的性能支持;而在人才队伍方面,一些行业人士称“算法工程师多,但会大模型的凤毛麟角”。
全局来看,当下,似乎仅有百度公司、清北高校等团队立志于全身心投入于此。大模型所谈者甚多,但行业“孤勇者”数量寥寥。
国产AIGC的进击障碍
摆在通用智能或大模型发展之路的另一个障碍是小模型。
大模型,因其在训练数据过程中引入多模态等数据,让数据标注的数量大规模增加,使之展现可打破行业藩篱的普适性。相对于小模型而言,具有通用性好、边际成本低、效率高等特点。
在一些具有前瞻思维的技术派眼里,大模型对于各行各业的影响将是摧枯拉朽式的,他们一致认为大模型是“当之无愧”的未来发展方向。技术上,大模型的发展上限更高,其会在未来某个时间点达到各种小模型的用户体验阈值。
其次,国内通用智能的AIGC缺少数据训练场景。
类似ChatGPT的训练场景尤为缺乏。这款产品之所以短时间之内进步神速,因大量用户为其充当了免费的数据标注员。目前情况来看,可与ChatGPT相较的数据训练场景在国内还鲜有见到。
另外,产业界对大模型有着浓烈的观望情绪。
业界普遍存在这样的忧虑:目前大模型应用不成熟,骤而上马将会对原有业务造成冲击。通用智能企业需要客单价高、数据训练场景丰富的派单需求,但这个问题又与企业的现实考量和预算投入相互矛盾。
没有数据用来训练、没有大钱(投资除外)养活产品,是摆在现实的两大难题。
国内AIGC的扩散难
元宇宙爆火,燃遍各行各业。它能否成为助力通用型AIGC扩散的有力平台?
这是一个有趣的想象。答案是,可以,但很难。
目前,AIGC和元宇宙的发展虽然存在相关性,不过就目前的情况来看,二者还未完全合流,处在“你做你的、我做我的”的阶段。
举例来说,在一些社群中,我们曾讨论这样的使用场景:在在线绘画App中嵌入AIGC功能,使用户在提交绘画作品后自动生成AIGC图片。但实际上,在第三方App中嵌入AIGC难度很大,要有能力处理高并发,要低延时,从而不影响用户体验,成本颇高。
在同样爆火的数字人中,AIGC的应用场景也不算多。目前,市面上绝大多数数字人均属“服务型数字人”。它们被广泛应用在虚拟的办事大厅、博物馆、手语电视台的手语节目等场景之中。
剖开数字人产业链可以看得更加直观:在这个产业链中,底层为算法层,负责驱动面部表情和手势动作;中层为渲染层;上层为构成层,负责建立数字人图像。但除了底层“数字脑”领域,其他层面与通用智能结合较少。
整体来看,目前的数字人大多承担着IP形象功能,能说话的数字人还比较少。在一些先进的数字人中,“中之人”又是必不可缺的因素(其承担动作捕捉、虚拟拍摄、表情抓取和后期合成、渲染精修等工作的真人)。表面上,这种数字人比较高端,但其背后通常有大量人员为其服务,制作成本虽有所降低,但整体制作成本也并不低廉。
以上原因都阻止了AIGC或通用智能扩散至寻常百姓家。