ChatGPT 是由 OpenAI 公司在 2022年11月推出的一款智能聊天机器人程序,属于文本类AI应用。这里,Chat 即「聊天」,GPT 的全称为“Generative Pre-trained Transformer”。由于采用 Transformer 架构,且 ChatGPT 在 GPT-3 大模型基础上专门针对 Chat 聊天能力做了性能上的调优,所以 ChatGPT 在自然语言的许多交互场景中表现出了卓越的性能。
Azure OpenAI- ChatGPT
Transformer 模型在2017年问世,能够同时并行进行数据计算和模型训练,训练时长更短,并且训练得出的模型可用语法解释,也就是模型具有可解释性。经过训练后,这个最初的 Transformer 模型在包括翻译准确度、英语成分句法分析等各项评分上都达到了业内第一,成为当时最先进的大型语言模型(Large Language Model, LLM)。
2018年,在 Transformer 模型诞生还不到一年的时候,OpenAI 公司发表了论文“Improving Language Understanding by Generative Pre-training”(用创造型预训练提高模型的语言理解力),并推出了具有1.17亿个参数的GPT-1(Generative Pre-training Transformers)模型。
这是一个用大量数据训练的、基于 Transformer 结构的模型。OpenAI 的工程师使用了经典的大型书籍文本数据集(BookCorpus)进行模型预训练。该数据集包含超过7000本从未出版的书籍,涵盖了冒险、奇幻、言情等类别。在预训练之后,工程师们又针对四种不同的语言场景、使用不同的特定数据集对模型进行进一步的训练(又称为微调,Fine-Tuning)。最终训练所得的模型在问答、文本相似性评估、语义蕴含判定,以及文本分类这四种语言场景,都取得了比基础 Transformer 模型更优的结果,成为了新的业内第一。
2019年,OpenAI 公布了一个具有15亿个参数的模型:GPT-2。该模型架构与 GPT-1 原理相同,主要区别在于 GPT-2 的规模更大(10倍)。同时,OpenAI 也发表了介绍该模型的论文“Language Models are Unsupervised Multitask Learners”。
2020年,OpenAI 发表论文“Language Models are Few-Shot Learner”,并推出了最新的 GPT-3 模型——它有1750亿个参数。GPT-3 模型架构与 GPT-2 类似,但是规模大了整整两个数量级。GPT-3 的训练集也比前两款 GPT 模型要大得多:经过基础过滤的全网页爬虫数据集(4290亿个词符)、维基百科文章(30亿词符)、两个不同的书籍数据集(670亿词符)。
2022年3月,OpenAI再次发表论文“Training Language Models to Follow Instructions with Human Feedback”,并推出了基于 GPT-3 模型并进一步微调的 InstructGPT 模型。InstructGPT 的模型训练中加入了人类的评价和反馈数据,而不仅仅是事先准备好的数据集,从而训练出更真实、更无害,且更好地遵循用户意图的语言模型。
2022年11月,ChatGP 横空出世,它是基于 GPT-3.5 架构开发的对话AI模型,是 InstructGPT 的兄弟模型。但两者在训练模型的数据量上,以及数据收集、数据如何设置用于训练方面有所不同。
深圳市云展信息技术有限公司成立于2015年,专注于云计算, BI大数据,数据中心, IoT物联网,人工智能, IT基础架构,信息安全等专业领域的高新技术企业,在广州、武汉等地设有分支机构,与众多的国内外知名软件厂商实现了全方位的紧密合作,先后的成为Microsoft、AWS、 Oracle、 VMware、 Citrix、 IBM、 Dell EMC、 Veritas、华为、阿里、腾讯的服务提供商,拥有丰富的软件产品线和解决方案。
目前提供Azure OpenAI, ChatGPT试用,解决方案咨询,应用开发与推广,托管运维技术服务。
绿泡泡xiluo068 2024-12-19
科盛光伏 2024-12-19
数学建模帮帮团 2024-12-19
新疆无人机培训考点 2024-12-19
中国民族建筑研究会 2024-12-19