当前位置:首页|资讯|人工智能|编程|深度学习

计算机视觉CV学习路线

作者:青椒哥哥做科研发布时间:2023-01-05
  1. 看吴恩达《机器学习》《深度学习》课程,学一点机器学习的知识。

  2. 读几篇CV模型的文章,了解一下经典的Alexnet、R-CNN系列、YOLO等。

  3. 在github上找几个tensorflow、pytorch实现上述模型的开源代码。

  4. 下载VOC、ImageNet、COCO、kaggle等数据集。

  5. 按照开源代码中的Readme准备一下数据集,跑一下结果。

好多初学者学了两个月、跑了几次结果后就认为已经入行CV了,其实不然,这里面有一个需要注意的问题:计算机视觉属于图像处理的范畴,而很多人却把它当成机器学习来看待。
然而实际上几乎80%的CV的从业者都没有从头至尾深入的学习图像处理方面的知识。
现在有了深度学习,不需要人为提取特征了,所以很多人不再关注图像底层的信息,而是直接越过这个根基去搭建模型,我觉得这是一个误区。 不同领域的图像,例如OCT、MR、遥感、自然图像等等,有着巨大的特征差异,对这些特征差异性都不了解,怎么在搭建模型之后对精度进行提升和改进呢?怎么在原来模型的基础上做一些改变呢? 因此,我认为好好学习一下图像预处理后处理的知识对CV有着至关重要的作用,例如图像去噪、分割、增强、增广等等。
学习心态:日拱一卒,不期速成~早就是优势,早学早受益!
然而网上很多教程也比较碎片,鉴于此,整理一条学习路线,跟着这个路线重新去梳理一下你的学习计划,相信计算机视觉水平一定会有质的提升。

《机器学习与计算机视觉》

 

计算机视觉简介

技术背景

  • 了解人工智能方向、热点

计算机视觉简介

  • cv简介

  • cv技能树构建

  • 应用领域

机器学习的数学基础

  • 线性与非线性变换

  • 概率学基础

  • kl散度

  • 梯度下降法

 

计算机视觉与机器学习基础

图像和视频

  • 图像的取样与量化

  • 滤波

  • 直方图

  • 上采样

  • 下采样

  • 卷积

  • 直方图均衡化算法

  • 最近邻差值

  • 单/双线性差值

 

特征选择与特征提取

  • 特征选择方法

  • filter等

  • 特征提取方法:PCA、LDA、SVD等

 

边缘提取

  • Canny

  • Roberts

  • Sobel

  • Prewitt

  • Hessian特征

  • Haar特征

 

相机模型

  • 小孔成像模型

  • 相机模型

  • 镜头畸变

  • 透视变换

 

计算机视觉与机器学习进阶

聚类算法

  • kmeans

  • 层次聚类

  • 密度聚类

  • 谱聚类

 

坐标变换与视觉测量

  • 左右手坐标系及转换

  • 万向锁

  • 旋转矩阵

  • 四元数

 

三维计算机视觉

  • 立体视觉

  • 多视几何

  • SIFT算法

 

三维计算机视觉与点云模型

  • PCL点云模型

  • spin image

  • 三维重构

  • SFM算法

 

图像滤波器

  • 直通滤波

  • 体素滤波

  • 双边滤波器

  • 条件滤波

  • 半径滤波

  • 图像增加噪声与降噪

  

OpenCV详解

OpenCV算法解析

  • 线性拟合

  • 最小二乘法

  • RANSAC算法

  • 哈希算法

  • DCT算法

  • 汉明距离

  • 图像相似度

 

《深度学习与计算机视觉》


神经网络

深度学习与神经网络

  • 深度学习简介

  • 基本的深度学习架构

  • 神经元

  • 激活函数详解(sigmoid、tanh、relu等)

  • 感性认识隐藏层

  • 如何定义网络层

  • 损失函数

 

推理和训练

  • 神经网络的推理和训练

  • bp算法详解

  • 归一化

  • Batch Normalization详解

  • 解决过拟合

  • dropout

  • softmax

  • 手推神经网络的训练过程

 

从零开始训练神经网络

  • 使用python从零开始实现神经网络训练

  • 构建神经网络的经验总结

 

深度学习开源框架

  • pytorch

  • tensorflow

  • caffe

  • mxnet

  • keras

  • 优化器详解(GD,SGD,RMSprop等



Copyright © 2025 aigcdaily.cn  北京智识时代科技有限公司  版权所有  京ICP备2023006237号-1