当前位置:首页|资讯|GPT-4|Midjourney|编程

医学数据分析技能点02 亚组分析+交互作用(Cox回归)

作者:熊大学习社发布时间:2024-06-08

诺维医学科研官网:https://www.newboat.top 更新换版中!

bilibili:文章对应的讲解视频在此。熊大学习社 https://space.bilibili.com/475774512

微信公众号:熊大学习社、诺维之舟

公益网站,https://nwzz.xyz/ ,内有医学离线数据库、数据提取、科研神器等高质量资料库

诺维之舟AI:https://gpt4.nwzz.xyz 可在线使用GPT4|GPT3.5|Midjourney

课程说明:

(1)亚组分析+交互作用(Cox回归)代码实例已全部公开。关注公众号熊大学习社,回复med002,获取资料信息。

(2)一对一论文指导学员免费获取学习资料,了解咨询扫客服二维码。

(3)关注熊大学习社。您的一键三连是我最大的动力。

一、效果

二、代码实例

 #####公众号:熊大学习社#####
 
 # 手动设置工作目录为代码和数据所在文件夹
 # 步骤方法:点菜单栏“session”->"Set Work Directory"->"Choose Directory"
 # 选择代码和数据所在文件夹即可
 
 # 查看工作目录
 getwd()
 
 
 # 检测是否安装了相关的库,没有则自动安装
 if(!require("gtsummary")) install.packages("gtsummary")
 if(!require("tidyverse")) install.packages("tidyverse")
 if(!require("forestploter")) install.packages("forestploter")
 if(!require("jstable")) install.packages("jstable")
 if(!require("grid")) install.packages("grid")
 if(!require("survival")) install.packages("survival")
 
 
 # 加载库
 library(gtsummary)
 library(tidyverse)
 library(forestploter) # 绘制森林图
 library(jstable)      # 于亚组分析
 library(grid)          # 可视化
 library(survival) # 生存分析
 
 
 # 代码目录,对应修改
 code_path <- "E:\\医学AI自媒体\\01 医学数据分析技能点\\医学数据分析技能点(02)亚组分析+交互作用(Cox回归)"
 
 
 
 
 # 9 亚组分析-----------
 
 # 设置代码目录
 setwd(code_path)
 getwd()
 
 # 读取数据
 final_data  <-  read.csv('final_data.csv')
 
 
 # 数据准备
 ds <- final_data %>%
   mutate(
     gender = factor(gender, levels = c("F", "M"), labels = c("Female", "Male")),
     co_diabetes = factor(co_diabetes, levels = c(0, 1), labels = c("No", "Yes")),
     co_hypertension = factor(co_hypertension, levels = c(0, 1), labels = c("No", "Yes")),
     co_neoplasm = factor(co_neoplasm, levels = c(0, 1), labels = c("No", "Yes")),
     co_COPD = factor(co_COPD, levels = c(0, 1), labels = c("No", "Yes")),
     co_CA_surgery = factor(co_CA_surgery, levels = c(0, 1), labels = c("No", "Yes")),
     co_GI = factor(co_GI, levels = c(0, 1), labels = c("No", "Yes")),
     co_ICH = factor(co_ICH, levels = c(0, 1), labels = c("No", "Yes")),
     co_bleeding = factor(co_bleeding, levels = c(0, 1), labels = c("No", "Yes")),
     co_VTE = factor(co_VTE, levels = c(0, 1), labels = c("No", "Yes")),
     co_CI = factor(co_CI, levels = c(0, 1), labels = c("No", "Yes")),
     group = factor(group, levels = c(0, 1), labels = c("No", "Yes")),
   ) %>%
   rename(
     "age" = "admission_age",
     "Gender" = "gender",
     "Race" = "race",
     "Weight" = "weight",
     "Height" = "height_imputed",
     "INR" = "inr",
     "PT" = "pt",
     "Diabetes" = "co_diabetes",
     "Hypertension" = "co_hypertension",
     "Neoplasm" = "co_neoplasm",
     "COPD" = "co_COPD",
     "CA" = "co_CA_surgery",
     "GI" = "co_GI",
     "ICH" = "co_ICH",
     "Bleeding" = "co_bleeding",
     "VTE" = "co_VTE",
     "CI" = "co_CI"
     
   )
 
 str(ds)
 # Age2
 ds$Age[ds$age>=18 & ds$age<60] ='18-60'
 ds$Age[ds$age>=60] ='>=60'
 ds$Age <- factor(ds$Age, levels = c('18-60', '>=60'))
 table(ds$Age,useNA = 'ifan')
 
 
 cox_sub_plot <- TableSubgroupMultiCox(formula = Surv(surv_90  , status_90) ~ sofa_score,
                                       var_subgroups = c("Age", "Gender", "Race","Diabetes", "Hypertension",
                                                         "Neoplasm", "COPD","CA", "GI","ICH", "Bleeding","VTE",
                                                         "CI"),
                                       data = ds)
 cox_sub_plot %>% write.csv(file="cox_sub_plot.csv")
 
 
 
 # Count/Percent/P value/P for interaction,4列的空值设为空格
 cox_sub_plot[, c(2, 3, 7, 8)][is.na(cox_sub_plot[, c(2, 3, 7, 8)])] <- " "  
 # 添加空白列,用于存放森林图的图形部分
 cox_sub_plot$` ` <- paste(rep(" ", nrow(cox_sub_plot)), collapse = " ")
 # Count/Point Estimate/Lower/Upper, 3列数据转换为数值型
 cox_sub_plot[, c(2,4,5,6)] <- apply(cox_sub_plot[, c(2,4,5,6)], 2, as.numeric)
 # 计算HR (95% CI),以便显示在图形中
 cox_sub_plot$"HR (95% CI)" <- ifelse(is.na(cox_sub_plot$"Point Estimate"), "",
                                      sprintf("%.2f (%.2f to %.2f)",
                                              cox_sub_plot$"Point Estimate", cox_sub_plot$Lower, cox_sub_plot$Upper))
 # 中间圆点的大小,与Count关联,数值型
 cox_sub_plot$se <- as.numeric(ifelse(is.na(cox_sub_plot$Count), " ", round(cox_sub_plot$Count / 1500, 4)))
 # Count列的空值设为空格
 cox_sub_plot[, c(2)][is.na(cox_sub_plot[, c(2)])] <- " "  
 # 第一行Overall放在最后显示
 cox_sub_plot <- rbind(cox_sub_plot[-1,],cox_sub_plot[1,])
 # Percent列重命名,加上%
 cox_sub_plot <- rename(cox_sub_plot, 'Percent(%)' = Percent)
 
 str(cox_sub_plot)
 
 
 # 森林图的格式设置
 tm <- forest_theme(base_size = 10,
                    ci_pch = 15,
                    #ci_col = "#762a83",
                    ci_col = "black",
                    ci_fill = "black",
                    ci_alpha = 0.8,
                    ci_lty = 1,
                    ci_lwd = 1.5,
                    ci_Theight = 0.2,
                    refline_lwd = 1,
                    refline_lty = "dashed",
                    refline_col = "grey20",
                    vertline_lwd = -0.1,  
                    vertline_lty = "dashed",
                    vertline_col = "red",
                    summary_fill = "blue",
                    summary_col = "#4575b4",
                    footnote_cex = 0.6,
                    footnote_fontface = "italic",
                    footnote_col = "grey20")
 
 # 森林图绘制
 plot_sub <- forest(
   #选择需要用于绘图的列:Variable/Count/Percent/空白列/HR(95%CI)/P value/P for interaction
   data = cox_sub_plot[, c(1, 2, 3, 9, 10, 7, 8)],  
   lower = cox_sub_plot$Lower,  #置信区间下限
   upper = cox_sub_plot$Upper,  #置信区间上限
   est = cox_sub_plot$`Point Estimate`,  #点估计值
   sizes = cox_sub_plot$se*0.15,
   ci_column = 4,  #点估计对应的列
   ref_line = 1,   #设置参考线位置
   xlim = c(0.5, 1.5),  # x轴的范围
   ticks_at = c(0.5,1,1.5),
   theme = tm
 )
 plot_sub
 
 plot_sub <- plot_sub %>%
   # 指定行加粗
   edit_plot(row = c(1,4,7,12,15,18,21,24,27,30,33,36,39,42),col=c(1),gp = gpar(fontface = "bold")) %>%
   # 最上侧画横线
   add_border(part = c("header")) %>%
   # 最下侧画横线
   add_border(row=43) %>%
   # 最后一行灰色背景
   edit_plot(row = 43, which = "background", gp = gpar(fill = "grey"))
 plot_sub
 
 # 第一种方式:保存为图片
 tiff('plot_sub.tiff',height = 2200,width = 2000,res= 200)
 plot_sub
 dev.off()
 
 # 第二种方式
 ggsave("plot_sub2.tiff", device='tiff', units = "cm", width = 30, height = 30, plot_sub)

三、小结

更多内容敬请关注熊大学习社,全网同名。

课程相关资料:

(1)亚组分析+交互作用(Cox回归)代码实例已全部公开。关注公众号熊大学习社,回复med002,获取资料信息。

(2)一对一论文指导学员免费获取学习资料,了解咨询扫客服二维码。

(3)关注熊大学习社。您的一键三连是我最大的动力。





Copyright © 2025 aigcdaily.cn  北京智识时代科技有限公司  版权所有  京ICP备2023006237号-1