当前位置:首页|资讯|人工智能|AGI|深度学习

人工智能全域变革图景展望:跃迁点来临(2023)丨附下载

作者:华制智能发布时间:2024-01-25

原标题:人工智能全域变革图景展望:跃迁点来临(2023)丨附下载

人工智能发展突飞猛进,各行各业均面临如何融合应用智能技术的关键之问,巨大应用潜力背后是新硬件、新算法、新数据的全面涌现。与此同时,ChatGPT被看作是推动数字经济时代生产力范式变革的标志性产品,有望作为新的底层通用技术,点燃第四次科技革命。一言以蔽之,人类社会正处在“跃迁”的关键时点。

毕马威联合中关村产业研究院通过行业调研和专家访谈,结合深入研究共同发布《人工智能全域变革图景展望:跃迁点来临(2023)》。报告立足全球及中国的人工智能产业现状,结合市场观察提出人工智能产业未来发展的十大趋势,并深度剖析各个趋势的发展情况与核心驱动力,以期能为AI产业界带来有益参考,锚定机遇,化解挑战。

人工智能产业发展十大趋势

趋势一:多模态预训练大模型将成为人工智能产业的标配

在算法方面,预训练大模型发展起源于自然语言处理(NLP)领域,当前已进入“百模大战”阶段,预计随着大模型创新从单模态转向多模态,多模态预训练大模型将逐渐成为人工智能产业的标配。目前,国内大模型虽在市场影响力方面稍逊色于GPT系列模型、PaLM-E等,但在中文语料训练、中国文化理解方面具备本土优势。此外,国内制造业等实体产业为大模型提供了丰富的训练数据和应用场景。

趋势二:高质量数据愈发稀缺将倒逼数据智能飞跃

在数据方面,大模型的训练需要大量的高质量数据,但是目前在数据质量方面还存在一定的问题,包括数据噪声、数据缺失、数据不平衡等问题。这会影响大模型的训练效果和准确性。根据一项来自Epoch Al Research团队的研究,高质量的语言数据存量将在2026年耗尽,低质量的语言数据和图像数据的存量则分别在2030年至2050年、2030年至2060年枯竭。这意味着,如果没有新增数据源或是数据利用效率未能显著提升,那么2030年以后,AI大模型的发展速度将明显放缓。

趋势三:智能算力无处不在的计算新范式将加速实现

在算力方面,新硬件、新架构竞相涌现,现有芯片、操作系统、应用软件等都可能被推翻重来,预计有望实现“万物皆数据”“无数不计算”“无算不智能”,即智能算力将无处不在,呈现“多元异构、软硬件协同、绿色集约、云边端一体化”四大特征。

趋势四:人工智能生成内容应用向全场景渗透

在AIGC(Artificial Intelligence Generated Content,人工智能生成内容)应用方面,其发展源头在数字内容创作领域,从单模态内容到多模态数字化内容创建已初显雏形,预计未来会进一步提高人类创造内容的效率,丰富数字内容生态,开启人机协同创作时代,各种需要创意和新内容的场景,都可能被AIGC重新定义,AIGC向全场景渗透指日可待。

趋势五:人工智能驱动科学研究从单点突破加速迈向平台化

在AI4S(AI for Science,人工智能驱动的科学研究)应用方面,有望从单点突破加速迈向平台化,在“单点突破”阶段,AI4S发展由科研学者主导,数据、模型、算法及方法论的原创性是市场关注重点,AI4S在特定任务或场景中的“单点应用”初步证明了对应解决方案的落地价值。

趋势六:具身智能、脑机接口等开启通用人工智能应用探索

在AGI(Artificial General Intelligence,通用人工智能)应用方面,其技术原理强调两大特性:一是需要基于先进算法实现智能处理和决策,包括深度学习、强化学习、进化计算等;二是需要具备和人类大脑相似的认知架构,包括感知、记忆、分析、思考、决策、创造等模块。参照AGI技术原理来看,ChatGPT在感知尤其是实时感知能力等方面,仍需进一步优化,而具身智能、脑机接口等技术的发展恰恰能带来有效助力。

趋势七:人工智能安全治理趋严、趋紧、趋难

人工智能安全治理呈现出趋严、趋紧、趋难三大特征,主要包括“黑箱”困境等技术安全挑战,虚假信息、偏见歧视乃至意识渗透等应用安全挑战,数据泄漏、篡改和真实性难验证等数据安全隐患,此背景下,中美欧三国作为人工智能发展的领军国和地区正积极开展相关立法,呈现出政策法规先行、监管趋严等特征。

趋势八:可解释AI、伦理安全、隐私保护等催生技术创新机遇

人工智能在发展过程中面临的技术伦理与社会伦理风险表明,人工智能安全、可信的发展之路任重道远,在解决AI风险的过程中催生出可解释AI、联邦学习等技术创新机遇。其中,联邦学习正成为新型的“技术基础设施”,有望成为下一代人工智能协同算法,隐私计算和协作网络的基础,使数据在合法合规、安全高效的基础上,实现数据价值流动。

趋势九:开源创新将是AGI生态建设的基石

AGI强调人工智能的通用性,意味着其生态需满足大量细分场景和长尾需求,这种情况下,生态系统越是繁荣开放,越能穷尽可能地覆盖所有专用化、场景化乃至碎片化的需求,保证AGI生态的丰富性和完整性。进一步地,开发者越多,意味着底层模型和上层应用等的迭代速度也会越快。但是,开源也存在一定风险,对于产业生态中的主体企业来说,选择开源某种程度上就意味着公开商业机密,不利于其构建竞争壁垒。

趋势十:模型即服务(MaaS)将是AGI生态构建的核心

商业模式关乎整体生态能否实现从价值创造到价值实现的完整闭环,目前AGI生态的商业模式主要以AIGC相关的商业模式为代表,主要体现为MaaS(Model as a Service,模型即服务)模式。该模式核心价值可归纳为:降低算法需求侧的开发技术和使用成本门槛,使AI模型和应用成为简单易用、触手可得的工具。

>>>>部分内容节选

报告完整内容请在公众号后台回复

【20231218】

获取下载链接

--THE END--

素材来源:新京报贝壳财经


Copyright © 2024 aigcdaily.cn  北京智识时代科技有限公司  版权所有  京ICP备2023006237号-1