当前位置:首页|资讯|OpenAI

离开OpenAI待业的Karpathy做了个大模型新项目,Star量一日破千

作者:机器之心Pro发布时间:2024-02-18

原标题:离开OpenAI待业的Karpathy做了个大模型新项目,Star量一日破千

机器之心报道

编辑:杜伟

没工作也要「卷」。

闲不下来的 Andrej Karpathy 又有了新项目!

过去几天,OpenAI 非常热闹,先有 AI 大牛 Andrej Karpathy 官宣离职,后有视频生成模型 Sora 撼动 AI 圈。

在宣布离开 OpenAI 之后,Karpathy 发推表示「这周可以歇一歇了。」

图源:https://twitter.com/karpathy/status/1757986972512239665

这种无事要做的状态让马斯克都羡慕(I am envious)了。

但是,如果你真的认为 Karpathy 会闲下来,那就有点「too young, too navie」了。

这不,有眼尖的网友发现了 Karpathy 的新项目 ——minbpe,致力于为 LLM 分词中常用的 BPE(Byte Pair Encoding, 字节对编码)算法创建最少、干净以及教育性的代码

仅仅一天的时间,该项目的 GitHub 标星已经达到了 1.2 k。

图源:https://twitter.com/ZainHasan6/status/1758727767204495367

有人 P 了一张图,表示 Karpathy 为大家「烹制了一顿大餐」。

图源:https://twitter.com/andrewcyu/status/1758897928385561069

更有人欢呼,Karpathy is back。

图源:https://twitter.com/fouriergalois/status/1758775281391677477

我们来看一看「minbpe」项目具体讲了些什么。

项目介绍

GitHub 地址:https://github.com/karpathy/minbpe

我们知道,BPE 算法是「字节级」的,在 UTF-8 编码的字符串上运行。该算法通过 GPT-2 论文和 GPT-2 相关的代码在大语言模型(LLM)中得到推广。

现如今,所有现代的 LLM(比如 GPT、Llama、Mistral)都使用 BPE 算法来训练它们的分词器(tokenizer)。

Karpathy 的 minbpe 项目存储库中提供了两个 Tokenizer,它们都可以执行分词器的 3 个主要功能:1)训练 tokenizer 词汇并合并给指定文本,2)从文本编码到 token,3)从 token 解码到文本。

详细的存储库文件分别如下:

  • minbpe/base.py:实现 Tokenizer 类,是基类。它包含了训练、编码和解码存根、保存 / 加载功能,还有一些常见的实用功能。不过,该类不应直接使用,而是要继承。
  • minbpe/basic.py:实现 BasicTokenizer,这是直接在文本上运行的 BPE 算法的最简单实现。
  • minbpe/regex.py:实现 RegexTokenizer,它通过正则表达式模式进一步拆分输入文本。作为一个预处理阶段,它在分词之前按类别(例如字母、数字、标点符号)拆分输入文本。这确保不会发生跨类别边界的合并。它是在 GPT-2 论文中引入的,并继续在 GPT-4 中使用。
  • minbpe/gpt4.py:实现 GPT4Tokenizer。此类是 RegexTokenizer 的轻量级封装,它精确地复现了 tiktoken(OpenAI 开源分词神器)库中 GPT-4 的分词。封装处理有关恢复 tokenizer 中精确合并的一些细节,并处理一些 1 字节的 token 排列。需要注意,奇偶校验尚未完全完成,没有处理特殊的 token。

脚本 train.py 在输入文本 tests/taylorswift.txt 上训练两个主要的 tokenizer,并将词汇保存到磁盘以进行可视化。Karpathy 称,该脚本在他的 MacBook (M1) 上运行大约需要 25 秒。

Karpathy 还表示,所有文件都非常短且注释详尽,并包含使用示例。如下为 BPE 维基百科文章的复现例子。

from minbpe import BasicTokenizer

tokenizer = BasicTokenizer()text = "aaabdaaabac"

tokenizer.train(text, 256 + 3) # 256 are the byte tokens, then do 3 merges

print(tokenizer.encode(text))# [258, 100, 258, 97, 99]

print(tokenizer.decode([258, 100, 258, 97, 99]))# aaabdaaabac

tokenizer.save("toy")# writes two files: toy.model (for loading) and toy.vocab (for viewing)

此外还提供了如何实现 GPT4Tokenizer,以及它与 tiktoken 的比较。

text = "hello123!!!? (안녕하세요!) 😉"

# tiktoken

import tiktoken

enc = tiktoken.get_encoding("cl100k_base")print(enc.encode(text))# [15339, 4513, 12340, 30, 320, 31495, 230, 75265, 243, 92245, 16715, 57037]

# ours

from minbpe import GPT4Tokenizer

tokenizer = GPT4Tokenizer()print(tokenizer.encode(text))# [15339, 4513, 12340, 30, 320, 31495, 230, 75265, 243, 92245, 16715, 57037]

当然,Karpathy 不满足只推出 GitHub 项目,他表示视频很快就会发布。


Copyright © 2024 aigcdaily.cn  北京智识时代科技有限公司  版权所有  京ICP备2023006237号-1