国产“GPT Store”发布了。
作者|赵健
国产大模型与OpenAI还有多少差距?
在去年11月30日的「甲子引力」年终盛典上,智谱AI CEO张鹏给到的答案是,在单点或少量指标上可以逼近OpenAI,但总体平均能力还存在不小的差距,而这也是压力与动力的来源。
但在两个月后的今天,这个差距已经无限接近。
智谱AI在今天举办的技术开放日上,正式发布新一代基座大模型GLM-4,整体逼近GPT-4,大约是GPT-4 90%以上的能力。GLM-4基础能力全面升级,支持128K上下文、多模态更新,还正式发布了对标OpenAI GPTs的GLMs个性化智能体功能,以及GLMs商店。
图片来自智谱AI
智谱AI是国内“百模大战”中估值最高的明星大模型公司之一。2023年10月,智谱AI宣布完成超25亿人民币融资,投资方汇聚了国内一线明星机构,包括社保基金中关村自主创新基金(君联资本为基金管理人)、美团、蚂蚁、阿里、腾讯、小米、金山、顺为、Boss直聘、好未来、红杉、高瓴等。
在绝大多数人眼中,2023年是大模型元年,ChatGPT打响了“百模大战”的发令枪;但在张鹏看来,大模型的元年要追溯到2020年,这一年OpenAI发布了ChatGPT的“前身”GPT-3,刚成立一年的智谱AI开始全力投入大模型的研发。
提前3年的“抢跑”,让智谱AI有更多的技术储备。今天智谱AI在Hugging Face上的下载量超过1100万次,位居全球最受欢迎开源机构第五名,也是国内唯一上榜的公司;其对话模型ChatGLM在GitHub上获得了5万+颗星,超过Llama。
在2023年初,智谱AI设立了一个雄心勃勃的目标:用一年的时间追平OpenAI最先进的模型。
现在,这位大模型的优等生交卷了。
1.产学研结合,科学家创业
在介绍GLM-4的技术升级之前,首先回顾一下智谱AI的成立过程,这是一家典型的科学家创业的公司。
智谱AI的前身,是在2006年诞生于清华大学计算机系知识工程实验室(KEG)的明星产品AMiner——学术搜索与情报挖掘平台。清华大学教授、KEG主任唐杰,是AMiner的核心创立者之一。
2013年,AMiner平台的商业化应用提上日程。2019年,在国家相关政策的鼓励与支持下,清华大学教授李涓子、唐杰等人依托AMine为基础,共同成立智谱AI,致力于打造可解释、鲁棒、安全可靠、具有推理能力的新一代认知引擎的公司。
清华大学计算机系教授、中国科学院院士张钹担任智谱AI首席顾问。智谱AI CEO张鹏,是国内首个中英文平衡的跨语言知识图谱系统XLORE的设计和研发者。
在智谱AI成立的第一天,公司写下了“让机器像人一样思考”的愿景。
2020年6月,智谱AI一周年司庆日,恰好撞上了OpenAI发布GPT-3。当天,张鹏与受邀参加智谱AI座谈的张钹院士深入讨论了GPT-3的技术前景。GPT-3让张鹏隐隐意识到,大模型确实是未来的方向。张鹏说:“OpenAI做的这个事情,也是我们一直期待去做的,一定追寻去做的,更是一定要去做的。”
同一年,智谱AI把OpenAI作为自己的对标对象,全力进行大模型的研发。
当时业内主流的预训练算法框架有三个:GPT、BERT与T5。智谱AI没有选择既有算法框架,而是选择了自研。2021年,智谱AI团队联合清华大学提出了GLM(General Language Model)算法框架,结合了GPT与BERT两者的特点,既能从前文预测后文,也能从后文猜测前文。
智谱AI团队参与了智源研究院主导的“悟道”大模型项目。悟道团队先是训练出一个百亿参数的稠密模型,然后又通过“稀疏化”方法训练出一个1.75万亿稀疏模型。这个万亿大模型最终用硬盘拷下来的文件大小约为20T,需要超过500张A100才能做推理,成本太高且性能并不好。
经过几轮激烈的争论,智谱AI团队最终决定自己训练一个千亿参数的稠密模型,直接对标1750亿参数的GPT-3。
最大的挑战是高昂的训练成本。智谱AI团队算了一笔账,要训练一个千亿参数大模型,需要至少1000张A100不出错地连续跑两个月。而当时整个智源研究院,也只有480张A100。
智谱AI找到了济南超算中心。济南超算在2020年采购了一批A100,原本计划将算力提供给视频游戏公司,但因为市场变化,这批芯片当时处于闲置状态。
于是,智谱AI租用了1000张A100,并从底层算子重构,投入20多人训练了8个月,终于在2022年7月训练出了千亿大模型——GLM-130B,并将其开源。
在训练过程中,智谱AI遇到了很多挑战,预训练一个高精度的千亿模型与训练百亿模型完全不同。张鹏告诉「甲子光年」,从训练百亿模型到千亿模型,难度绝不止线性地增长10倍,挑战包括频繁的随机硬件故障、模型梯度爆炸、算法中意外的过多内存使用、新的 Megatron 和 DeepSpeed 框架中 3D 流水线的调试、无法从优化器状态中恢复、机器间TCP拥塞,以及许多许多意外的 “bug”。但最终这些问题都被一一攻克。
2022年11月,斯坦福大学大模型中心对全球30个主流大模型进行了全方位的评测,GLM-130B是亚洲唯一入选的大模型。
在推出GLM-130B的基座模型之后,智谱AI又先后在应用层推出了AIGC模型及产品矩阵,包括生成式AI 提效助手“智谱清言”、高效率代码模型CodeGeeX等。
图片来自智谱AI CEO张鹏演讲PPT
从产品矩阵来看,智谱AI成了国内最像OpenAI的大模型公司。智谱AI也在2023年初定下了目标:用一年的时间,追平OpenAI最先进的模型,也就是后来发布的GPT-4。
2.逼近GPT-4
今天的技术开放日,智谱AI正式发布了新一代基座大模型GLM-4,这是智谱AI的交卷时刻。张鹏表示,GLM-4,已经超过GPT-3.5,整体逼近GPT-4。
GLM-4带来了5项重大升级,首先是基础能力的全面提升。
在权威的英文测试榜单中,GLM-4已经整体逼近GPT-4,平均能达到GPT-4 90%以上的水平,在个别项目上表现持平;而在国内企业更加看重的中文任务上,GLM-4的表现全面超过GPT-4。
图片来自智谱AI CEO张鹏演讲PPT
第二项更新是更长的上下文窗口。
GLM-4将上下文从32K扩展到128K,与GPT-4 Turbo相当,单词提示词文本达到300页;同时不丢失精度,在被称为“大海捞针”的Needle test中几乎100%召回。
第三项更新是多模态能力,文生图与多模态能力都得到增强。
张鹏表示,CogView的文生图能力明显强于开源的Stable Diffusion XL模型,逼近OpenAI的DALL-E3,在对齐、保真、安全、组合布局等维度上达到DALL-E3 90%的水平。
图片来自智谱AI CEO张鹏演讲PPT
第四项能力更新,则是把以上单点的能力进行“All in One”,推出GLM-4 All Tools工具。具体包括:
多工具自动调用,网页浏监准确率超过 GPT-4。
智谱AI在现场演示了文生图的能力,不过在最后一轮交互中出现了失误,智谱清言迟迟没有给出回复。有网友打趣道:“这是真唱,有实力也有失误。”
最后一项更新,则是对标OpenAI在上周刚刚正式发布的GPTs商店,推出GLMs个性化智能体功能,以及GLMs商店——智能体中心。
智谱清言的GLMs商店界面
就像一个不懂任何代码的用户,仅凭借自然语言交互就能“傻瓜式”构建GPTs一样,智谱AI也支持用简单的提示词指令创建属于自己的GLMs,并上架智能体中心。张鹏在现场宣布,GLMs的模型应用商店“GLM Store”的开发者分成计划也将同期公布。
智谱AI是一家to B基因更浓厚的公司,但在2023年孵化了一个年轻的to C团队,创立了对话机器人智谱清言。如今,这个团队正在依托底层大模型能力,在争夺AI时代入口的竞争中快速卡位。
3.更加Open的AI战略
红杉资本在去年11月曾预测,生成式AI进入第二幕。第一幕是从技术角度出发,第二幕则是从客户角度出发,更多关注基础模型的落地。
智谱AI可能是基础大模型公司中,在商业化落地走的最快的公司。张鹏曾告诉「甲子光年」:“技术与商业化这两件事,一直都是智谱AI的核心战略。”
MaaS(Model as a Service)理念最早就是由智谱AI提出的。MaaS的服务方式主要有三种:云端API、云端私有化以及本地私有化。张鹏在技术开放日现场宣布,已经有200家企事业单位,与智谱AI深度共建AI落地的解决方案。
图片来自智谱AI CEO张鹏演讲PPT
智谱AI定位基座大模型,而不做行业热议的垂直模型。张鹏认为大模型产品的机会在于成为底层操作系统,对外提供API接口。“我们不会直接扎到具体场景里做应用开发,很多行业存在技术、数据的壁垒,不是创业公司的体量能够搞定的,更多希望是合作伙伴在垂直行业深耕。”
张鹏告诉「甲子光年」:“应用层的生态伙伴通常分为几类,第一类是行业性的独立软件开发商(ISV),帮客户做实施交付,或者客户的最后一公里的系统融合打通的工作;第二类是行业性的合作伙伴,他们有比较强的资源与技术能力,我们联合做一些微调模型以及相应的解决方案。此外还有一些开源生态的伙伴等等。”
与生态伙伴合作,短期内可能不会快速做大收入,但长期来看不但能够做大AI的蛋糕,还能避免上一波AI浪潮中常见的定制化陷阱。
智谱AI还在扩大自己的朋友圈,让自己变得更加开放。
一方面是技术上,继续保持开源的战略,将ChatGLM-6B、GLM-130B、WebGLM、VisualGLM、CodeGeeX、CogView、CogVLM、CogAgent等一系列模型开源。可以说,这才是真正意义的“Open AI”。
另一方面,智谱AI宣布了三项基金——大模型科研基金、大模型开源基金和“Z计划”创业基金,来回馈科研、回馈社区,以及构建生态。
其中,智谱与合作伙伴联合设立10亿元的创业基金,已经投资了算力基础设施公司数道智算,大模型公司面壁智能、聆心智能,AI Infra公司无问芯穹、基流科技,以及行业解决方案层的幂律智能、玦芯生物、智览医疗等等。
图片来自智谱AI CEO张鹏演讲PPT
智谱AI,正在用开源开放、生态合作的的方式,构建自己的竞争壁垒。
在把OpenAI列为追赶目标的第四年,智谱AI终于向其看齐。国产大模型若想要真正引领创新,从追赶到超越,再到“无人区”的探索,现在才刚刚开始。
(封面图来自电影《极速车王》)
END.