北京时间 7 月 18 日晚,OpenAI 难得推出了一个「小模型」——GPT-4o mini。
顾名思义,GPT-4o mini 是 OpenAI 在 GPT-4o 基础上进行的一次尝试。官方表示,GPT-4o mini 在文本智能和多模态推理方面的基准性能超越了 GPT-3.5 Turbo,甚至在 LMSYS「聊天机器人对战」排行榜上还强过 GPT-4。
此外,GPT-4o mini 还支持 128K Token 的长上下文窗口,以及每个请求最多 16K Token 的输出。简而言之,GPT-4o mini 可以记忆比 GPT-3.5 Turbo 长得多的内容和对话,还能在单次输出更长的回答。
不过 GPT-4o mini 的核心,还是提供更好的成本效益。
根据 OpenAI 指出,GPT-4o mini 不仅性能更强,价格也来到了「白菜价」。具体来讲,GPT-4o mini 每百万个输入 Token 的定价是 15 美分(约合人民币 1.09 元),每百万个输出 Token 的定价是 60 美分(约合人民币 4.36 元):
比 GPT-3.5 Turbo 便宜超过 60%。
对普通用户来说,更重要的是 GPT-4o 将在 ChatGPT 中全面替代 GPT-3.5 Turbo,免费用户也能使用。到今天(7 月 19 日)早上,小雷已经在 ChatGPT 看到了 GPT-4o mini,而不是 GPT-3.5。
图/雷科技
另据 VentureBeat 采访,OpenAI 产品负责人兼 API 部门主管 Olivier Godement 表示,GPT-4o mini 将在今年秋天通过苹果的 Apple Intelligence,为旗下的移动设备和 Mac 设备提供服务。
不过这里还有一个可能存在的误解,尽管 GPT-4o mini 比 GPT-4o 等大模型要小得多,但其规模依然比手机上搭载的端侧大模型(基本不超过 7b)大得多。因此,在 iOS 18 等系统上,GPT-4o mini 还是通过云端而非本地的形式提供服务。
GPT-4o mini,更好用更便宜的 GPT
OpenAI 发布 GPT-4o mini 之后,很多人最先关心的一个问题可能是:GPT-4o mini,相比 GPT-4 和 GPT-4o 用起来的表现如何?
用一个例子来简单说明下,分别询问通过这三个模型询问 ChatGPT:「介绍下 OpenAI 最新发布的 GPT-4o mini 模型。」
在生成结果上,GPT-4o mini 的回答并不包含任何数据,内容相对空洞,但相关描述基本正确。考虑到 OpenAI 指出 GPT-4o mini 只具有截至 2023 年 10 月的知识,且在 ChatGPT 中不支持联网,可以说明 GPT-4o mini 是从命名作出的「推测」。
GPT-4o mini,图/雷科技
相比之下,GPT-4(未经联网搜索)告诉我「OpenAI 并没有发布名为『GPT-4o mini』的模型」,直到主动要求联网搜索,才真正开始介绍。不过即便如此,GPT-4 还是没有明显超出 GPT-4o mini 生成的答案,就算明确问它「成本有多低」,也没能给出让人满意的答案。
GPT-4,图/雷科技
至于 GPT-4o(自动联网搜索),作为目前 OpenAI 旗下甚至全世界最强大的模型,其表现毋庸置疑。更详略得当的介绍、更确凿的数据和引用链接,都让它能够继续稳坐大模型的头把交椅。
GPT-4o,图/雷科技
简单总结一下,GPT-4o mini 相比之前的 GPT-3.5 有着明显的进步,甚至相比 GPT-4 也有一定优势。虽然我目前的几个简单测试基本符合 OpenAI 和 LMSYS 排行榜给出的结论,但要下最终结论还是太早。如果大家有需求,后续可以做更全面的对比。
另外,OpenAI 也公布 GPT-4o mini 在不同基准下的「跑分成绩」,以供参考:
图/ OpenAI
总体来看,相比 Gemini 1.5 Flash、Claude 3 Haiku 这两个同样主打「性价比」的模型(由超大模型衍生),GPT-4o mini 的优势还是比较明显,尤其是在 MGSM(数学推理)、MATH(数学解决)、HumanEval(代码生成)等方面。
同时 OpenAI 还表示,GPT-4o mini 在 API 中支持文本,之后还会逐步增加图像、视频和音频的输入输出支持,且得益于与 GPT-4o 共享的改进 Token 生成器,处理非英语文本现在更加经济高效。
在 GPT-4o mini 推出之后,马上就有海外和国内的开发者计划切换到 GPT-4o mini 试试,比如前爱范儿副总裁兼首席设计官@Ping.开发的 AI 语音笔记 App「闪念贝壳」:
图/ X@Ping.
事实上,对于 GPT-4o mini 来说,现阶段最核心也最重要的用户是 API 面向的开发者,而非 ChatGPT 面向的普通用户。
OpenAI 为什么要推出 GPT-4o?
对于 OpenAI 来说,推出 GPT-4o mini 是一件比较反常的事情,因为在此之前,从 GPT-1/2/3、GPT-3.5 到 GPT-4、GPT-4o,OpenAI 都是在推出更强的大模型,冲击机器智能的天花板。就算是 Turbo 系列,也是同等性能下优化速度和成本。
但在 GPT-4o mini 上,OpenAI 选择了缩小模型规模、降低模型性能,以实现更具成本效益的生成式 AI 模型。
问题在于,在 OpenAI 之前,很多大模型厂商从一开始就是「大中小模型」并进的策略,就算是谷歌 Gemini 和 Anthropic Claude,也都分别推出 Gemini 1.5 Flash 和 Claude 3 Haiku。
对此,Olivier Godement 的解释是,OpenAI 专注于创建更大、更好的模型,如 GPT-4,这需要大量的人力和计算资源。不过随着时间的推移,OpenAI 注意到开发人员越来越渴望使用较小的模型,因此公司决定投入资源开发 GPT-4o mini,并于现在推出。
「我们的使命是使用最前沿技术,构建最强大、最有用的应用程序,我们当然希望继续做前沿模型,推动技术进步,」Olivier Godement 在采访中说,「但我们也希望拥有最好的小模型,我认为它会非常受欢迎。」
图/ OpenAI
简单来说,就是优先级的问题。但在优先级的背后,是越来越多公司偏好中小型的生成式 AI 模型。
WSJ 近期的一篇报道,就援引多家公司高管以及 Google Cloud 全球生成式 AI 产品上市策略副总裁 Oliver Parker 指出,过去三个月,企业正在集体转向更小参数规模的生成式 AI 模型。
成本当然是最核心的原因。
根据 AIGCRank 维护的《国内外 AI 大语言模型 API 价格对比》榜单:
- GPT-4o 每百万个输入 Token 的定价是 5 美元(人民币约为 36.3 元),输出是 15 美元(人民币约为 109 元);
- 百度文心 4.0 Turbo 的定价是输入 30 元、输出 60 元;
- Claude 3 Haiku 的定价是输入是 0.25 美元(人民币约为 1.81 元)、输出 1.25 美元(人民币约为 9.08 元)。
价格差距,图/雷科技
在确保性能满足需求的前提下,Claude 3 Haiku 「小」模型的成本优势,不言而喻。
被认为引起国内大模型集体降价的「始作俑者」DeepSeek(深度求索),在与 Gemini 1.5 Flash 综合表现相近的情况下,API 定价(每百万个)可以做到输入 1 元、输出 2 元。阿里通义千问的 Qwen-Long,甚至还做到了输入 0.5 元、输出 2 元。
对于开发者而言,「成本」和「效益」是大模型应用中最核心的两点。而更低的大模型价格,无疑有助于更多企业和个人开发者在更多场景、更多应用中引入生成式 AI,也有助于 AI 在普通人生活、工作中的普及,正如 Oliver Parker 强调的:
但更小的模型,够用吗?我认为 GPT-4o Mini 真正体现了 OpenAI 让 AI 更加普及的使命。如果我们希望 AI 惠及世界的每一个角落,每一个行业,每一个应用,我们必须让 AI 更加实惠。
在今年 4 月举办的百度 AI 开发者大会上,李彦宏指出,在一些特定场景中,经过精调后的小模型,它的使用效果可以媲美大模型。
图/雷科技
随后,阿里前技术副总裁贾扬清在朋友圈表示同意:「我觉得 Robin 这点说得非常对,在初始的应用尝试过去之后,模型的特化会是一个从效果上和从性价比上更加 make sense 的选择。」
这不只是国内大模型行业的共识。
「在整个互联网上训练出来的巨型大语言模型可能会严重大材小用。」网络安全、内容分发和云计算公司 Akamai 的首席技术官 Robert Blumofe 表示,对于企业来说,「你并不需要一个知道《教父》所有演员、知道所有电影、知道所有电视节目的 AI 模型。」
简单来说,大模型在朝着「通用化」的方向走了太远,很多应用场景其实不需要大模型的「全能」。
而为了让每一个参数都变得更有价值,大模型厂商还在一直研究更高效的蒸馏、剪枝等模型压缩手段,试图将大型语言模型的「知识」,更多地迁移到更小、更简单的中小型语言模型中。
数据更是关键。
IEEE Spectrum,图/雷科技
IEEE(电气电子工程师学会)旗下杂志《IEEE 综览》援引专业学者指出,大型语言模型直接采用互联网高度多样化的海量文本进行训练,但不管是微软的 Phi 模型,还是苹果 Apple Intelligent 中的模型,都是使用更丰富、更复杂的数据集来训练,具有更一致的风格和更高的质量,也更容易学习。
打个比方,「大」模型相当于凭借着超高的记忆力和计算能力,在互联网这个充斥各种高质量、低质量的「大染缸」中学习;而现在的「小」模型则是直接学习经过筛选、提炼的「教课书」,自然更容易学进去。
不过有意思的是,去年的时候行业更多认为,「小」模型真正的用武之地是在设备端,诸如智能手机、笔记本电脑等计算设备中,但更多厂商和开发者在云端还是更重视「大」模型。
但在过去几个月,「小」模型还没有在设备端真正火起来,也开始成为云端的趋势所在。
究其根本,其实还是目前大模型在实际应用中「成本」与「效益」的不匹配,而「效益」还需要继续摸索、尝试的当下,「成本」就成了必须要解决的主要挑战。
写在最后
大模型不再「参数为王」。
在今年 4 月举办的 WIRED25(《连线》:改变世界的 25 人)活动上,OpenAI CEO 山姆·奥特曼(Sam Altman)表示,大模型的进步不会来自模型的更大化,「我认为我们正处在巨大模型时代的终结。」
图/ OpenAI
某种程度上,山姆·奥特曼暗示了酝酿已久的 GPT-5 不会在参数上继续扩大,而是通过算法或数据更进一步提高大模型的「智能」,从而通向 AGI(通用智能)。
至于刚刚推出的 GPT-4o mini,则是代表了另一条路径,一条将 AI 更快普及到全世界的路径。
但要走通这条路,最核心的问题就是在确保「效益」的同时,尽可能地降低「成本」,让更多开发者用上 AI,用更具创意和实际价值的应用,让更多用户从中受益。
而这,可能也是国产厂商最擅长的。
2024上半年,科技圈风起云涌。
大模型加速落地,AI手机、AI PC、AI家电、AI搜索、AI电商……AI应用层出不穷;
Vision Pro开售并登陆中国市场,再掀XR空间计算浪潮;
HarmonyOS NEXT正式发布,移动OS生态生变;
汽车全面进入“下半场”,智能化成头等大事;
电商竞争日益剧烈,卷低价更卷服务;
出海浪潮风起云涌,中国品牌迈上全球化征程;
……
7月流火,雷科技·年中回顾专题上线,总结科技产业2024上半年值得记录的品牌、技术和产品,记录过去、展望未来,敬请关注。