【阅前提示】我在原有“数理化自学丛书”系列17册的基础上又添加了1册八五人教甲种本《微积分初步》,原因有二:一则,我是双鱼座,有一定程度的偶双症,但“自学丛书”系列中代数4册、几何5册实在令我刺挠,因此就需要加入一本代数,使两边能够对偶平衡;二则,我认为《微积分初步》这本书对“准大学生”很重要,以我的惨痛教训为例,大一高数第一堂课,我是直接蒙圈,学了个寂寞。另外大学物理的前置条件是必须有基础微积分知识,因此我所读院校的大学物理课是推迟开课;而比较生猛的大学则是直接开课,然后在绪论课中猛灌基础高数(例如田光善舒幼生老师的力学课)。我选择在“自学丛书”17本的基础上添加这本《微积分初步》,就是希望小伙伴升大学前可以看看,不至于像我当年那样被高数打了个措手不及。
第一章极限
一、本章的主要内容是数列的极限的概念及其运算法则;函数的极限的概念及其运算法则;函数连续的概念和初等函数的连续性;两个重要的极限,
。
二、极限是描述数列和函数在无限过程中的变化趋势的重要概念。极限方法是人们从有限中认识无限,从近似中认识精确,从量变中认识质变的一种数学方法,它是微积分的基本思想和方法。
数列的极限与函数的极限的运算法则是类似的:两个数列(或函数)的和、差、积、商的极限分别等于这两个数列(或函数)的极限的和、差、积、商(作为除数的数列或函数的极限不能为零)。运用这些运算法则,可以简化极限的计算过程。
三、连续的概念是用极限的概念定义的,但是连续和极限是有区别的:极限所讨论的是函数在某一点附近的变化趋势,而不管函数在这一点上是否有定义或取什么值;函数在一点处连续不仅要求在这一点有极限,而且要求极限同这一点的函数值相等。
四、幂函数、指数函数、对数函数、三角函数和反三角函数,统称基本初等函数。
由基本初等函数和常数经过有限次四则运算和有限次函数的复合而得出的函数,统称初等函数。
基本初等函数和一切初等函数在它们的定义区间上是连续函数。
复习参考题一
A组
1、求无穷等比数列 {qⁿ} 当 q=1/2 时前 10 项的和与前 100 项的和。
2、作图表示下列无穷数列,并说出数列是否趋近于某一常数:
3、已知数列 {1/3ⁿ},根据下表中给出的 ε 的数值,求出相应的正整数 N,使得当 n>N 时,| 1/3ⁿ-0 |<ε 恒成立。
4、举出两个极限是 7 的无穷数列。
5、举出两个没有极限的无穷数列。
6、求下列数列的极限:
7、
8、求下列极限:
,而且 x₀ 不是 f(x) 的分母的根:
;
。
10、说出下列函数是怎样复合而成的:
11、求下列极限:
12、求下列极限:
B组
13、下面的数列中,哪些有极限?如果数列有极限,说出它的极限。
(1) 1,0.1,0.01,0.001,……;
(2) +2,-2,+2,-2,……;
(3) {(√n+1)/n};
(4) {qⁿ}(提示:分 q=1,q=-1,| q |<1,| q |>1 四种情况讨论)。
14、已知 a>0,求下列极限:
15、如图,从 ∠BAC 的边上一点 B 作 BC⊥AC,从 C 作 CD⊥AB,从 D 再作 DE⊥AC,这样无限进行下去。假定 BC=7cm,CD=6cm,求这些垂线长的和。
16、将下列循环小数化成分数:
17、求下列极限:
18、求下列极限:
19、求下列无穷数列各项的和 S:
20、求下列极限:
21、求下列极限: