在客户服务领域,传统的智能客服系统正面临诸多挑战,从高昂的配置成本到不尽如人意的问题回答准确率,以及机械式回答对用户体验的影响。本文将探讨如何利用AI大模型技术,打造新一代的智能客服系统,以解决这些痛点并提升客户服务的效率和质量。
在《对AI大模型应用场景的深入思考(上篇)》中,风叔介绍了AI大模型在企业通用场景中的应用。本篇文章,我们重点围绕客服场景,详细介绍如何通过AI 大模型替代传统智能客服系统。
传统智能客服系统主要包括知识库、机器人、人工坐席、智能质检、工单管理等核心模块。虽然智能客服已经是一个发展了很多年的成熟领域,但仍然面临非常多的痛点。
第一,机器人配置成本高。传统智能客服往往需要穷举业务上的各种问题和答案,提前准备好大量的FAQ,甚至每个问题还要提供10个以上的相似问。因为机器人并没有真正理解用户提问的真正意图,只是在做简单的相似度匹配。整个机器人的配置过程是非常繁琐的,至少需要3个月以上的时间。
第二,问题回答准确率不高。因为传统智能客服使用的是BERT模型,即使经过大量的数据标注,但仍然解决不了机器人对用户Query理解不足的问题,回答准确率不足50%。这就是大家经常吐槽智能客服是智障的原因,很多用户在面对智能客服的时候,都会直接输入“转人工”。
第三,机械式回答,影响用户体验。因为传统智能客服是基于FAQ进行回复的,无论用户处于什么情绪,机器人都是标准回答,无法给到用户情绪价值。
第四,难以处理复杂问题。如果让智能客服处理一些特定任务,客服机器人只会按照设定好的标准流程一步步进行处理。如果用户反馈超出了这个流程,智能客服就无法处理,最终只能转人工。
所以,很多传统智能客服系统既没有解决用户问题,也没有降低人工客服的工作量,反而增加了用户投诉。
通过AI大模型,传统智能客服的这些问题都可以迎刃而解。下图是风叔设计的客服智能体系统,包括客服机器人、领域AI专家、人工坐席、对话质检和智能工单。
在下文中,风叔将围绕上图的业务流程,详细介绍如何利用大模型打造新一代的智能客服系统,完整的PPT文件可以在文末获取。
一、客服机器人Agent
客服机器人Agent就是直接面向用户的客服Robot,在整个客服系统中起到如下作用:
领域AI专家主要用于接收客服机器人的问题,并基于领域知识给出具体的回复。我们可以基于具体业务场景构建不同的领域AI专家:
构建领域AI专家的关键在于知识库的搭建。传统知识库搭建需要构建大量的FAQ和相似问,但是通过AI智能体和RAG系统,我们可以非常便捷的实现知识库的搭建和维护,如下图所示:
首先是知识库搭建,我们先将各种文档进行预处理,比如OCR解析、文本分割、图片识别和表格识别。分割后的内容可以分别交给大模型进行内容的识别和总结,这样可以将文档中的文字、图片和表格进行关联匹配。匹配后构建向量索引,存入向量数据库。
对于需要进行精确逻辑推理的场景,我们也可以通过大模型进行实体和实体关系的抽取,输出实体摘要,并存入图数据库。
然后是知识库应用,即针对用户的具体问题进行内容召回,在召回环节可以提供多种优化方式。比如召回前对用户问题进行扩散、分解、转译、意图识别和路由;召回中自动选择目标知识库,通过相似度计算或知识图谱召回,并对召回结果进行评分和排序;召回后进行Token压缩、敏感词混淆,然后交给大模型生成最终的回复。
关于如何使用RAG系统进行知识库的索引和召回,可以参考风叔之前写的《RAG实战篇系列》。
三、人工客服
这个环节和传统智能客服并无区别,主要用于兜底,或者处理一些复杂度较高、用户情绪较差的场景。
在传统的智能客服系统中,机器转人工是能明显感知到的,而且人工回答完之后没法再转接给机器,客户体验不好。而通过AI Agent,用户感知不到对面是机器人在服务。当Agent答不上来时,会自动转给人工客服,同时对此前和客户的对话进行总结,人工只需要回答转进来的这一条消息,就可以立即再转回给Agent。
在这样的模式下,人工客服的工作量就能从“会话级别”下降到“消息级别”,大幅提升人工客服的有效接待量,同时客户的服务体验也得到了提升。
四、对话质检
对话质检是对客户对话内容的总结与分析,从而评估智能体和人工对于客服回复的质量,以及分析客户对于本次服务的满意度。传统的对话质检主要是通过NLP分词进行分析,效率和准确度都很一般。
而通过AI Agent,大模型可以在精确理解语义的情况下,实现以下四大能力:
传统的智能客服系统,工单的生成和跟进需要由人来执行,执行者需要知晓此前客服与用户的对话内容、用户问题的具体描述、以及推进实际的解决方案,整个流程的效率相对比较缓慢,这也是很多消费者对于客服后续跟进的效率表示不满的原因。
通过AI Agent,可以在以下环节对整体服务流程提效:
在这篇文章中,风叔介绍了如何利用AI大模型打造新一代的智能客服系统。相比传统智能客服,AI大模型客服系统能在客户体验、用户意图识别、问题引导、准确回复、流程控制、知识库建设、对话质检、工单系统等核心环节,带来质的飞跃。
智能客服系统也是AI大模型目前相对比较常见和成熟的应用领域,在《对AI大模型应用场景的深入思考(上篇)》中,风叔也给智能客服场景打出了场景价值(4星)和场景可行性(5星)的高分。
在下一篇文章中,风叔将继续对AI大模型的应用场景进行深挖,敬请期待。
本文由人人都是产品经理作者【风叔】,微信公众号:【风叔云】,原创/授权 发布于人人都是产品经理,未经许可,禁止转载。
题图来自 Unsplash,基于 CC0 协议。